If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-20x+16=0
a = 5; b = -20; c = +16;
Δ = b2-4ac
Δ = -202-4·5·16
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{5}}{2*5}=\frac{20-4\sqrt{5}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{5}}{2*5}=\frac{20+4\sqrt{5}}{10} $
| x*x+2x-2=0 | | 5x+23=3x+71 | | 6x+5=3x-106x+5=3x−10 | | 3x2+20x-32=0 | | y2+4y-77=0 | | -5-9v=-8v | | x-285=358 | | −20=4−4u | | 10(y+2)=4(2y+1) | | x-45=66 | | 10-5z=4z-8 | | 7(4x+2)+2=-67 | | 5(4w+1)/4=-8 | | 4(3x-4)-3(x+3)=14x | | 12p-3=10 | | 7(f-5)=28 | | 5(f-5)=28 | | 3x/4-2=102=10 | | 3x-2=102=10 | | 3x-2=3x-2+10 | | X²+11x-1452=0 | | Y=-6x+-33 | | 8,5x+165,3=18x-4 | | 57c=1314 | | 37=2(5x-1)+5 | | 5x^2-98-28x=0 | | 3(2y-4)=5(y-1) | | 2(2x+1)=3(x3) | | 4m^2=8 | | m2+10m+2=0 | | |5m+1|=9 | | |2x+11|=3 |